
Software development is prolifer-
ating. A key reason: It is easier to start a new
software project than enhance existing pro-
grams. This is how corporations and the gov-
ernment accumulate applications that have a
significant amount of common or overlapping
code, yet continue as separate systems.

There are justifications for such waste and
proliferation. As Capers Jones points out in
his book Software Assessments, Benchmarks and
Best Practices (Addison-Wesley, 2000), when the
scope of software applications grows to more
than 10,000 function points—a measure of
inputs and outputs from a system—36% of proj-
ects are late and over budget. The chance of a
project being cancelled grows to more than 40%. With
odds like that, starting a new application becomes prefer-
able to enhancing the functionality of an existing one.

There are other reasons for launching lots of small
projects instead of enlarging current ones. According to
Jones, application requirements are seldom more than
50% complete. Therefore, keeping projects small mini-
mizes the chance of setting off in the wrong direction.

Finding and fixing bugs remains the most expensive soft-
ware activity, and when an application gets too big, the debug-
ging process overwhelms the capacity of programmers to keep
track of consequential errors. Testing an application will get out
of control as the size of an application increases because less
than 50% of the code can be verified as soon as an application
passes 10,000 function points. In addition, existing systems
usually depend on obsolete technologies and have insufficient
funds for a major upgrade of legacy software code.

Yet, the decision to launch yet another software project
invites chaos. There are more than 600 programming lan-
guages, some 50 metrics for measuring progress, and more than
30 fundamentally different development methods for compli-
ance with any of 20 standards. There are at least 15 different
approaches to software testing. Because programmers like to
pick the latest method for doing their work, any new software
investment will result in increased diversity.

Fragmentation of systems is buttressed by the need to set
up special-purpose databases. Special-purpose infrastructures
are conceived for each new investment. When subcontractors
implement such projects, they tend to deliver results that foster
unique solutions. This is how we end up with yet another “island
of automation” with its own rules, methods and support staff.

If an organization adds “small” applications over several
years, it will wind up with a huge collection of systems that per-

form comparable but not identical functions.
Each of these will consume maintenance costs
that cannot be shared across applications.

Thus, maintenance staffs will keep growing
and exceed manpower available for new applica-
tions. For instance, the Department of Defense
has tens of thousands of systems delivering
results that a limited number of finance, per-
sonnel, logistics and asset management staff
could only support properly if a way were found
to eliminate the incentives for starting yet
another quick answer.

There’s no reason why a corporate depart-
ment must build dozens of
finance applications, each
generating thousands of on-
demand reports. There’s
no reason why each has to
depend on an infrastructure
consisting of special-purpose
networks, routers, switches,
servers and databases.

Organizations must stop
building diverse infrastructures; they must focus instead on
consolidating applications. Standardization of a corporatewide
infrastructure and tight control over communication protocols
make it possible to proceed with the merger of applications. The
outcome: a unified infrastructure that serves shared needs. Many
solutions can then be supported from shared databases. What you
get then can be defined as pure service-oriented architecture.

The establishment of a portal can help accommodate local
adaptations of applications. Changes can be made only to the
small amount of code that controls the user interface, yet allow
applications to be accessed. The separation of the portal from
the databases and the infrastructure makes it possible to upgrade
technologies only when required. Instead of making an entire
application obsolete, we can now replace only the code that needs
replacing. For instance, upgrading the infrastructure can be done
as a service for all apps, rather than as a fix for each one.

By taking such an approach, you can save money. (For an
example showing a 39% software cost savings, see “Measuring
Results: Is Consolidation Paying Off?” p. 83.) Better still, appli-
cations can be slimmed down so that the money saved can be
re-applied to innovation.3

Paul A. Strassmann, a professor at George Mason
University, is a former technology executive at Xerox, NASA
and Kraft. He can be reached at paul@strassmann.com.

LAUNCHING too many small APPLICATIONS can be a
big headache. SOLUTION: a shared infrastructure.

By paul a. strassmann

WWW.BASELINEMAG.COM

BUILDING SOFTWARE?
CURB YOUR ENTHUSIASM

Organizations must
stop building diverse
infrastructures and focus
instead on consolidating
applications.

B
a

s
e

li
n

e
 M

a
r

c
h

 2
0

0
7

26 p
h

o
t

o
g

r
a

p
h

 b
y

 s
t

e
v

e
 f

r
e

e
m

a
n

